Mse In Moving Average
¿Cuál es la diferencia entre la media móvil y la media móvil ponderada? La media móvil de 5 periodos, basada en los precios anteriores, se calcularía utilizando la siguiente fórmula: Con base en la ecuación anterior, el precio promedio durante el período mencionado anteriormente fue 90,66. El uso de promedios móviles es un método eficaz para eliminar fuertes fluctuaciones de precios. La limitación clave es que los puntos de datos de datos antiguos no se ponderan de forma diferente a los puntos de datos cercanos al inicio del conjunto de datos. Aquí es donde entran en juego los promedios móviles ponderados. Los promedios ponderados asignan una ponderación más pesada a los puntos de datos más actuales, ya que son más relevantes que los puntos de datos en el pasado lejano. La suma de la ponderación debe sumar 1 (o 100). En el caso de la media móvil simple, las ponderaciones están distribuidas equitativamente, por lo que no se muestran en la tabla anterior. Precio de Cierre de AAPL El promedio ponderado se calcula multiplicando el precio dado por su ponderación asociada y luego sumando los valores. En el ejemplo anterior, la media móvil ponderada de 5 días sería de 90.62. En este ejemplo, el punto de datos reciente recibió la mayor ponderación de 15 puntos arbitrarios. Puede pesar los valores de cualquier valor que considere adecuado. El valor más bajo de la media ponderada por encima del promedio simple sugiere que la presión de venta reciente podría ser más significativa de lo que algunos operadores anticipan. Para la mayoría de los comerciantes, la opción más popular al usar medias móviles ponderadas es usar una ponderación más alta para los valores recientes. (Para obtener más información, echa un vistazo a la Tutorial de Media móvil) Lea acerca de la diferencia entre promedios móviles exponenciales y medias móviles ponderadas, dos indicadores de suavizado que. La única diferencia entre estos dos tipos de media móvil es la sensibilidad que cada uno muestra a los cambios en los datos utilizados. Leer Respuesta Aprenda sobre el cálculo e interpretación de promedios ponderados, incluyendo cómo calcular un promedio ponderado usando Microsoft. Leer respuesta Vea por qué los promedios móviles han demostrado ser ventajoso para los comerciantes y analistas y útil cuando se aplica a los gráficos de precios y. Leer Respuesta Aprenda cómo los comerciantes y los inversores usan alfa ponderada para identificar el ímpetu de un precio de las acciones y si los precios se moverán más alto. Leer Respuesta Conozca algunas de las limitaciones inherentes y las posibles aplicaciones erróneas del análisis del promedio móvil en el stock técnico. Leer respuesta Crear una media móvil ponderada en 3 pasos Descripción general de la media móvil La media móvil es una técnica estadística utilizada para suavizar las fluctuaciones a corto plazo en una serie de datos con el fin de reconocer más fácilmente tendencias o ciclos a más largo plazo. El promedio móvil se refiere a veces como promedio móvil o promedio corriente. Un promedio móvil es una serie de números, cada uno de los cuales representa el promedio de un intervalo de número especificado de períodos anteriores. Cuanto mayor es el intervalo, más suavizado se produce. Cuanto menor sea el intervalo, más el promedio móvil se asemeja a la serie de datos reales. Las medias móviles realizan las tres funciones siguientes: Suavizar los datos, lo que significa mejorar el ajuste de los datos a una línea. Reducir el efecto de la variación temporal y el ruido aleatorio. Resaltando valores atípicos por encima o por debajo de la tendencia. El promedio móvil es una de las técnicas estadísticas más utilizadas en la industria para identificar tendencias de datos. Por ejemplo, los gerentes de ventas suelen ver los promedios móviles de tres meses de los datos de ventas. El artículo comparará los promedios móviles simples de dos meses, tres meses y seis meses de los mismos datos de venta. El promedio móvil se utiliza con bastante frecuencia en el análisis técnico de datos financieros, como los rendimientos de las acciones y en la economía, para localizar tendencias en series temporales macroeconómicas como el empleo. Hay una serie de variaciones de la media móvil. Los más empleados son el promedio móvil simple, el promedio móvil ponderado y el promedio móvil exponencial. Realizar cada una de estas técnicas en Excel se tratará en detalle en artículos separados en este blog. Aquí hay una breve descripción de cada una de estas tres técnicas. Promedio móvil simple Cada punto en una media móvil simple es el promedio de un número especificado de períodos anteriores. Un enlace a otro artículo de este blog que ofrece una explicación detallada de la implementación de esta técnica en Excel es el siguiente: Promedio móvil ponderado Los puntos de la media móvil ponderada también representan un promedio de un número específico de períodos anteriores. La media móvil ponderada aplica ponderaciones diferentes a ciertos períodos anteriores con bastante frecuencia, a los periodos más recientes se les da mayor peso. Este artículo de blog proporcionará una explicación detallada de la implementación de esta técnica en Excel. Promedio móvil exponencial Los puntos de la media móvil exponencial también representan un promedio de un número específico de períodos anteriores. El suavizado exponencial aplica factores de ponderación a períodos anteriores que disminuyen exponencialmente, nunca llegando a cero. Como resultado el suavizado exponencial tiene en cuenta todos los períodos anteriores en lugar de un número designado de períodos anteriores que hace la media móvil ponderada. Un enlace a otro artículo en este blog que proporciona una explicación detallada de la implementación de esta técnica en Excel es el siguiente: A continuación se describe el proceso de 3 pasos de crear una media móvil ponderada de datos de series de tiempo en Excel: Paso 1 8211 Representación gráfica de los datos originales en un gráfico de series de tiempo El gráfico de líneas es el gráfico de Excel más utilizado para graficar datos de series temporales. Un ejemplo de un gráfico de Excel utilizado para trazar 13 períodos de datos de ventas se muestra de la siguiente manera: Paso 2 8211 Crear la media móvil ponderada con fórmulas en Excel Excel no proporciona la herramienta Media móvil en el menú Análisis de datos para que las fórmulas se deben Construido manualmente. En este caso se crea un promedio móvil ponderado de 2 intervalos aplicando un peso de 2 al período más reciente y un peso de 1 al período anterior. La fórmula en la celda E5 se puede copiar a la celda E17. Paso 3 8211 Agregue la serie de Promedio Movido Ponderado a la Carta Estos datos deben agregarse ahora al gráfico que contiene los datos originales de línea de tiempo de ventas. Los datos se añadirán simplemente como una serie más de datos en el gráfico. Para ello, haga clic con el botón derecho en cualquier parte del gráfico y aparecerá un menú. Pulse Seleccionar datos para agregar la nueva serie de datos. La serie de media móvil se agregará completando el cuadro de diálogo Editar serie de la siguiente manera: El gráfico que contiene la serie de datos original y que el promedio móvil ponderado de 2 intervalos de datos se muestra como sigue. Tenga en cuenta que la línea de media móvil es bastante más suave y las desviaciones de los datos brutos por encima y por debajo de la línea de tendencia son mucho más evidentes. La tendencia general es ahora mucho más evidente también. Una media móvil de 3 intervalos puede ser creada y colocada en el gráfico usando casi el mismo procedimiento como sigue. Tenga en cuenta que el período más reciente se asigna el peso de 3, el período anterior a que se asigna y el peso de 2, y el período anterior a que se asigna un peso de 1. Estos datos ahora deben agregarse a la tabla que contiene el original Línea de tiempo de datos de ventas junto con la serie de 2 intervalos. Los datos se añadirán simplemente como una serie más de datos en el gráfico. Para ello, haga clic con el botón derecho en cualquier parte del gráfico y aparecerá un menú. Pulse Seleccionar datos para agregar la nueva serie de datos. La serie del promedio móvil se agregará completando el cuadro de diálogo Editar serie de la siguiente manera: Como era de esperar un poco más suavizado se produce con el promedio móvil ponderado de 3 intervalos que con el promedio móvil ponderado de 2 intervalos. A modo de comparación, se calculará un promedio móvil ponderado de 6 intervalos y se agregará al gráfico de la misma manera que a continuación. Obsérvese que los pesos progresivamente decrecientes asignados como períodos se vuelven más distantes en el pasado. Estos datos deben agregarse ahora al gráfico que contiene la línea de tiempo original de datos de ventas junto con la serie de 2 y 3 intervalos. Los datos se añadirán simplemente como una serie más de datos en el gráfico. Para ello, haga clic con el botón derecho en cualquier parte del gráfico y aparecerá un menú. Pulse Seleccionar datos para agregar la nueva serie de datos. La serie de media móvil se agregará completando el cuadro de diálogo Editar serie como sigue: Como era de esperar, el promedio móvil ponderado de 6 intervalos es significativamente más suave que los promedios móviles ponderados de 2 ó 3 intervalos. Un gráfico más suave se ajusta más estrechamente a una línea recta. Análisis de la precisión de los pronósticos Los dos componentes de la precisión de los pronósticos son los siguientes: Tendencia de los pronósticos 8211 Tendencia de un pronóstico a ser consistentemente mayor o menor que los valores reales de una serie temporal. El sesgo de predicción es la suma de todo error dividido por el número de períodos como sigue: Un sesgo positivo indica una tendencia a la subprevisión. Un sesgo negativo indica una tendencia a pronosticar. El sesgo no mide la precisión porque los errores positivos y negativos se anulan mutuamente. Error de pronóstico 8211 Diferencia entre los valores reales de una serie temporal y los valores previstos de la predicción. Las medidas más comunes de error de pronóstico son las siguientes: MAD 8211 Desviación media absoluta MAD calcula el valor absoluto medio del error y se calcula con la siguiente fórmula: La media de los valores absolutos de los errores elimina el efecto de cancelación de errores positivos y negativos. Cuanto más pequeño es el MAD, mejor es el modelo. MSE 8211 Mean Squared Error MSE es una medida popular de error que elimina el efecto de cancelación de errores positivos y negativos sumando los cuadrados del error con la siguiente fórmula: Los términos de error grande tienden a exagerar MSE porque los términos de error son todos cuadrados. RMSE (Root Square Mean) reduce este problema tomando la raíz cuadrada de MSE. MAPE 8211 Error medio de porcentaje absoluto MAPE también elimina el efecto de cancelación de errores positivos y negativos sumando los valores absolutos de los términos de error. MAPE calcula la suma de los términos de error porcentual con la siguiente fórmula: Mediante la suma de los términos de error porcentual, MAPE puede utilizarse para comparar modelos de pronóstico que utilizan diferentes escalas de medida. Calculando el sesgo, MAD, MSE, RMSE y MAPE en Excel Para el Promedio móvil ponderado Bias, MAD, MSE, RMSE y MAPE se calcularán en Excel para evaluar el intervalo de 2 intervalos, 3 intervalos y 6 intervalos de movimiento ponderado Promedio obtenido en este artículo y mostrado como sigue: El primer paso es calcular E t. E t 2. E t, E t / Y t-act. Y luego suma como sigue: Bias, MAD, MSE, MAPE y RMSE se pueden calcular de la siguiente manera: Los mismos cálculos se realizan ahora para calcular Bias, MAD, MSE, MAPE y RMSE para la media móvil ponderada de 3 intervalos. El Bias, el MAD, el MSE, el MAPE y el RMSE se pueden calcular de la siguiente manera: Ahora se realizan los mismos cálculos para calcular Bias, MAD, MSE, MAPE y RMSE para la media móvil ponderada de 6 intervalos. Bias, MAD, MSE, MAPE y RMSE se pueden calcular de la siguiente manera: Bias, MAD, MSE, MAPE y RMSE se resumen para el 2-intervalo, 3 intervalos y 6 intervalos medias móviles ponderadas como sigue. El promedio móvil ponderado de 2 intervalos es el modelo que más se ajusta a los datos reales, como era de esperar. 160 Excel Master Series Directorio de blogs Temas estadísticos y artículos en cada tema Promedios móviles ponderados: lo básico Durante años, los técnicos han encontrado dos problemas con el promedio móvil simple. El primer problema radica en el marco temporal del promedio móvil (MA). La mayoría de los analistas técnicos creen que la acción de los precios. El precio de la acción de apertura o cierre, no es suficiente de lo que depender para predecir adecuadamente las señales de compra o venta de la acción de cruce del MA. Para resolver este problema, los analistas asignan ahora más peso a los datos de precios más recientes utilizando el promedio móvil con suavidad exponencial (EMA). Por ejemplo, usando un MA de 10 días, un analista tomaría el precio de cierre del décimo día y multiplicaría este número por 10, el noveno día por nueve, el octavo Día por ocho y así sucesivamente a la primera de la MA. Una vez que se ha determinado el total, el analista dividirá el número por la adición de los multiplicadores. Si agrega los multiplicadores del ejemplo de MA de 10 días, el número es 55. Este indicador se conoce como el promedio móvil ponderado linealmente. (Para la lectura relacionada, echa un vistazo a los promedios móviles simples hacen que las tendencias se destacan.) Muchos técnicos son creyentes firmes en el promedio móvil exponencialmente suavizado (EMA). Este indicador se ha explicado de muchas maneras diferentes que confunde tanto a los estudiantes como a los inversores. Tal vez la mejor explicación viene de John J. Murphys Análisis Técnico de los Mercados Financieros, (publicado por el Instituto de Nueva York de Finanzas, 1999): El exponencialmente suavizado media móvil se ocupa de los dos problemas asociados con el promedio móvil simple. En primer lugar, el promedio suavizado exponencial asigna un mayor peso a los datos más recientes. Por lo tanto, es una media móvil ponderada. Pero si bien asigna menor importancia a los datos de precios pasados, incluye en su cálculo todos los datos en la vida útil del instrumento. Además, el usuario puede ajustar la ponderación para dar mayor o menor peso al precio de los días más recientes, que se agrega a un porcentaje del valor de días anteriores. La suma de ambos valores porcentuales se suma a 100. Por ejemplo, el precio de los últimos días se podría asignar un peso de 10 (.10), que se agrega a los días anteriores peso de 90 (.90). Esto da el último día 10 de la ponderación total. Esto sería el equivalente a un promedio de 20 días, al dar al precio de los últimos días un valor menor de 5 (0,05). Figura 1: Promedio móvil suavizado exponencial El gráfico anterior muestra el índice Nasdaq Composite desde la primera semana de agosto de 2000 hasta el 1 de junio de 2001. Como puede ver claramente, la EMA, que en este caso está usando los datos de cierre de precios en un De nueve días, tiene señales de venta definitiva el 8 de septiembre (marcado por una flecha negra hacia abajo). Este fue el día en que el índice se rompió por debajo del nivel de los 4.000. La segunda flecha negra muestra otra pierna abajo que los técnicos esperaban. El Nasdaq no pudo generar suficiente volumen e interés de los inversores minoristas para romper la marca de 3.000. Luego se zambulló de nuevo hasta el fondo en 1619.58 el 4 de abril. La tendencia alcista del 12 de abril está marcada por una flecha. Aquí el índice cerró en 1,961.46, y los técnicos comenzaron a ver a los gestores de fondos institucionales comenzando a recoger algunos negocios como Cisco, Microsoft y algunos de los temas relacionados con la energía. Modelos de media móvil y suavización exponencial Como un primer paso para ir más allá de los modelos medios, los modelos de caminata aleatoria y los modelos de tendencias lineales, los patrones y las tendencias no estacionales Puede ser extrapolado usando un modelo de media móvil o de suavizado. La suposición básica detrás de los modelos de promedio y suavizado es que la serie temporal es localmente estacionaria con una media variable lentamente. Por lo tanto, tomamos un promedio móvil (local) para estimar el valor actual de la media y luego usarlo como pronóstico para el futuro cercano. Esto puede considerarse como un compromiso entre el modelo medio y el modelo aleatorio-paseo-sin-deriva. La misma estrategia se puede utilizar para estimar y extrapolar una tendencia local. Una media móvil se denomina a menudo una versión quotomoldeada de la serie original porque el promedio de corto plazo tiene el efecto de suavizar los golpes en la serie original. Al ajustar el grado de suavizado (el ancho de la media móvil), podemos esperar encontrar algún tipo de equilibrio óptimo entre el rendimiento de la media y los modelos de caminata aleatoria. El tipo más simple de modelo de promediación es el. Promedio móvil simple (igualmente ponderado): El pronóstico para el valor de Y en el tiempo t1 que se hace en el tiempo t es igual al promedio simple de las observaciones m más recientes: (Aquí y en otros lugares usaré el símbolo 8220Y-hat8221 para permanecer en pie Para un pronóstico de la serie de tiempo Y hecho a la fecha más temprana posible posible por un modelo dado). Este promedio se centra en el período t (m1) / 2, lo que implica que la estimación de la media local tiende a quedar rezagada detrás del Valor real de la media local de aproximadamente (m1) / 2 periodos. Por lo tanto, decimos que la edad media de los datos en el promedio móvil simple es (m1) / 2 en relación con el período para el cual se calcula el pronóstico: es la cantidad de tiempo por el cual los pronósticos tenderán a rezagarse detrás de los puntos de inflexión en el datos. Por ejemplo, si está promediando los últimos 5 valores, las previsiones serán de aproximadamente 3 períodos tarde en la respuesta a los puntos de inflexión. Tenga en cuenta que si m1, el modelo de media móvil simple (SMA) es equivalente al modelo de caminata aleatoria (sin crecimiento). Si m es muy grande (comparable a la longitud del período de estimación), el modelo SMA es equivalente al modelo medio. Como con cualquier parámetro de un modelo de pronóstico, es habitual ajustar el valor de k para obtener el mejor valor de los datos, es decir, los errores de predicción más pequeños en promedio. He aquí un ejemplo de una serie que parece presentar fluctuaciones aleatorias alrededor de una media de variación lenta. En primer lugar, vamos a tratar de encajar con un modelo de caminata al azar, que es equivalente a una media móvil simple de un término: El modelo de caminata aleatoria responde muy rápidamente a los cambios en la serie, pero al hacerlo, recoge gran parte del quotnoisequot en el Los datos (las fluctuaciones aleatorias), así como el quotsignalquot (la media local). Si en lugar de eso intentamos una media móvil simple de 5 términos, obtendremos un conjunto de previsiones más suaves: El promedio móvil simple a 5 terminos produce errores significativamente menores que el modelo de caminata aleatoria en este caso. La edad promedio de los datos de esta previsión es de 3 ((51) / 2), de modo que tiende a quedar a la zaga de los puntos de inflexión en aproximadamente tres períodos. (Por ejemplo, parece haber ocurrido una recesión en el período 21, pero las previsiones no giran hasta varios periodos más tarde). Obsérvese que los pronósticos a largo plazo del modelo SMA son una línea recta horizontal, al igual que en la caminata aleatoria modelo. Por lo tanto, el modelo SMA asume que no hay tendencia en los datos. Sin embargo, mientras que las previsiones del modelo de caminata aleatoria son simplemente iguales al último valor observado, las previsiones del modelo SMA son iguales a un promedio ponderado de valores recientes. Los límites de confianza calculados por Statgraphics para los pronósticos a largo plazo de la media móvil simple no se amplían a medida que aumenta el horizonte de pronóstico. Esto obviamente no es correcto Desafortunadamente, no hay una teoría estadística subyacente que nos diga cómo los intervalos de confianza deberían ampliarse para este modelo. Sin embargo, no es demasiado difícil calcular estimaciones empíricas de los límites de confianza para las previsiones a más largo plazo. Por ejemplo, podría configurar una hoja de cálculo en la que el modelo SMA se utilizaría para pronosticar dos pasos adelante, tres pasos adelante, etc. dentro de la muestra de datos históricos. A continuación, podría calcular las desviaciones estándar de los errores en cada horizonte de pronóstico y, a continuación, construir intervalos de confianza para pronósticos a más largo plazo sumando y restando múltiplos de la desviación estándar apropiada. Si intentamos una media móvil sencilla de 9 términos, obtendremos pronósticos aún más suaves y más de un efecto rezagado: La edad promedio es ahora de 5 períodos ((91) / 2). Si tomamos una media móvil de 19 términos, la edad promedio aumenta a 10: Obsérvese que, de hecho, las previsiones están ahora rezagadas detrás de los puntos de inflexión en aproximadamente 10 períodos. Qué cantidad de suavizado es la mejor para esta serie Aquí hay una tabla que compara sus estadísticas de error, incluyendo también un promedio de 3 términos: El modelo C, la media móvil de 5 términos, produce el valor más bajo de RMSE por un pequeño margen sobre los 3 A término y 9 promedios, y sus otras estadísticas son casi idénticas. Por lo tanto, entre los modelos con estadísticas de error muy similares, podemos elegir si preferiríamos un poco más de capacidad de respuesta o un poco más de suavidad en las previsiones. El modelo de media móvil simple descrito anteriormente tiene la propiedad indeseable de que trata las últimas k observaciones por igual e ignora por completo todas las observaciones precedentes. (Volver al principio de la página.) Browns Simple Exponential Smoothing Intuitivamente, los datos pasados deben ser descontados de una manera más gradual - por ejemplo, la observación más reciente debería tener un poco más de peso que la segunda más reciente, y la segunda más reciente debería tener un poco más de peso que la tercera más reciente, y pronto. El modelo de suavizado exponencial simple (SES) lo logra. Sea 945 una constante quotsmoothingquot (un número entre 0 y 1). Una forma de escribir el modelo es definir una serie L que represente el nivel actual (es decir, el valor medio local) de la serie, tal como se estimó a partir de los datos hasta el presente. El valor de L en el tiempo t se calcula recursivamente a partir de su propio valor anterior como este: Así, el valor suavizado actual es una interpolación entre el valor suavizado anterior y la observación actual, donde 945 controla la proximidad del valor interpolado al valor más reciente observación. El pronóstico para el siguiente período es simplemente el valor suavizado actual: Equivalentemente, podemos expresar el próximo pronóstico directamente en términos de previsiones anteriores y observaciones previas, en cualquiera de las siguientes versiones equivalentes. En la primera versión, la previsión es una interpolación entre la previsión anterior y la observación anterior: En la segunda versión, la siguiente previsión se obtiene ajustando la previsión anterior en la dirección del error anterior por una cantidad fraccionada de 945. es el error hecho en Tiempo t En la tercera versión, el pronóstico es una media móvil exponencialmente ponderada (es decir, descontada) con el factor de descuento 1-945: La versión de interpolación de la fórmula de pronóstico es la más simple de usar si está implementando el modelo en una hoja de cálculo: se ajusta en un Célula única y contiene referencias de celdas que apuntan a la previsión anterior, la observación anterior y la celda donde se almacena el valor de 945. Tenga en cuenta que si 945 1, el modelo SES es equivalente a un modelo de caminata aleatoria (sin crecimiento). Si 945 0, el modelo SES es equivalente al modelo medio, asumiendo que el primer valor suavizado se establece igual a la media. La edad promedio de los datos en el pronóstico de suavización exponencial simple es de 1/945 en relación con el período para el cual se calcula la predicción. (Esto no se supone que sea obvio, pero se puede demostrar fácilmente mediante la evaluación de una serie infinita.) Por lo tanto, el pronóstico promedio móvil simple tiende a quedar rezagado detrás de puntos de inflexión en aproximadamente 1/945 períodos. Por ejemplo, cuando 945 0.5 el retraso es 2 períodos cuando 945 0.2 el retraso es 5 períodos cuando 945 0.1 el retraso es 10 períodos, y así sucesivamente. Para una edad promedio dada (es decir, la cantidad de retraso), el simple suavizado exponencial (SES) pronosticado es algo superior al pronóstico de la media móvil simple (SMA) porque coloca relativamente más peso en la observación más reciente - i. e. Es un poco más sensible a los cambios ocurridos en el pasado reciente. Por ejemplo, un modelo SMA con 9 términos y un modelo SES con 945 0.2 tienen una edad promedio de 5 para los datos de sus pronósticos, pero el modelo SES pone más peso en los 3 últimos valores que el modelo SMA y en el modelo SMA. Otra ventaja importante del modelo SES sobre el modelo SMA es que el modelo SES utiliza un parámetro de suavizado que es continuamente variable, por lo que se puede optimizar fácilmente Utilizando un algoritmo quotsolverquot para minimizar el error cuadrático medio. El valor óptimo de 945 en el modelo SES de esta serie resulta ser 0.2961, como se muestra aquí: La edad promedio de los datos de esta previsión es de 1 / 0,2961 3,4 períodos, que es similar a la de un movimiento simple de 6 términos promedio. Los pronósticos a largo plazo del modelo SES son una línea recta horizontal. Como en el modelo SMA y el modelo de caminata aleatoria sin crecimiento. Sin embargo, tenga en cuenta que los intervalos de confianza calculados por Statgraphics ahora divergen de manera razonable, y que son sustancialmente más estrechos que los intervalos de confianza para el modelo de caminata aleatoria. El modelo SES asume que la serie es algo más predecible que el modelo de caminata aleatoria. Un modelo SES es en realidad un caso especial de un modelo ARIMA. Por lo que la teoría estadística de los modelos ARIMA proporciona una base sólida para el cálculo de los intervalos de confianza para el modelo SES. En particular, un modelo SES es un modelo ARIMA con una diferencia no estacional, un término MA (1) y ningún término constante. Conocido también como modelo quotARIMA (0,1,1) sin constantequot. El coeficiente MA (1) en el modelo ARIMA corresponde a la cantidad 1-945 en el modelo SES. Por ejemplo, si se ajusta un modelo ARIMA (0,1,1) sin constante a la serie analizada aquí, el coeficiente MA estimado (1) resulta ser 0.7029, que es casi exactamente uno menos 0.2961. Es posible añadir la suposición de una tendencia lineal constante no nula a un modelo SES. Para ello, basta con especificar un modelo ARIMA con una diferencia no estacional y un término MA (1) con una constante, es decir, un modelo ARIMA (0,1,1) con constante. Las previsiones a largo plazo tendrán entonces una tendencia que es igual a la tendencia media observada durante todo el período de estimación. No puede hacerlo junto con el ajuste estacional, ya que las opciones de ajuste estacional están deshabilitadas cuando el tipo de modelo se establece en ARIMA. Sin embargo, puede agregar una tendencia exponencial a largo plazo constante a un modelo de suavizado exponencial simple (con o sin ajuste estacional) utilizando la opción de ajuste de inflación en el procedimiento de previsión. La tasa apropiada de inflación (crecimiento porcentual) por período puede estimarse como el coeficiente de pendiente en un modelo de tendencia lineal ajustado a los datos en conjunción con una transformación de logaritmo natural o puede basarse en otra información independiente sobre las perspectivas de crecimiento a largo plazo . (Regreso al inicio de la página.) Browns Linear (es decir, doble) Suavizado exponencial Los modelos SMA y SES suponen que no hay ninguna tendencia de ningún tipo en los datos (que normalmente está bien o al menos no es demasiado malo para 1- Avance anticipado cuando los datos son relativamente ruidosos), y se pueden modificar para incorporar una tendencia lineal constante como se muestra arriba. ¿Qué pasa con las tendencias a corto plazo? Si una serie muestra una tasa de crecimiento variable o un patrón cíclico que se destaca claramente contra el ruido, y si hay una necesidad de pronosticar más de un período, la estimación de una tendencia local también podría ser un problema. El modelo de suavizado exponencial simple puede ser generalizado para obtener un modelo lineal de suavizado exponencial (LES) que calcula las estimaciones locales de nivel y tendencia. El modelo de tendencia más simple que varía en función del tiempo es el modelo lineal de suavizado exponencial de Browns, que utiliza dos series suavizadas diferentes centradas en diferentes momentos del tiempo. La fórmula de predicción se basa en una extrapolación de una línea a través de los dos centros. (Una versión más sofisticada de este modelo, Holt8217s, se discute a continuación). La forma algebraica del modelo de suavizado exponencial lineal de Brown8217s, como la del modelo de suavizado exponencial simple, puede expresarse en varias formas diferentes pero equivalentes. La forma estándar de este modelo se expresa usualmente de la siguiente manera: Sea S la serie de suavizado simple obtenida aplicando el suavizado exponencial simple a la serie Y. Es decir, el valor de S en el periodo t está dado por: (Recuérdese que, Exponencial, esto sería la previsión para Y en el período t1). Entonces, vamos a Squot denotar la serie doblemente suavizada obtenida aplicando el suavizado exponencial simple (usando el mismo 945) a la serie S: Finalmente, la previsión para Y tk. Para cualquier kgt1, viene dado por: Esto produce e 1 0 (es decir, trucar un poco y dejar que el primer pronóstico sea igual a la primera observación real), y e 2 Y 2 8211 Y 1. Después de lo cual las previsiones se generan usando la ecuación anterior. Esto produce los mismos valores ajustados que la fórmula basada en S y S si estos últimos se iniciaron usando S 1 S 1 Y 1. Esta versión del modelo se utiliza en la página siguiente que ilustra una combinación de suavizado exponencial con ajuste estacional. Holt8217s Linear Exponential Smoothing Brown8217s El modelo LES calcula las estimaciones locales de nivel y tendencia al suavizar los datos recientes, pero el hecho de que lo haga con un solo parámetro de suavizado impone una restricción en los patrones de datos que puede encajar: el nivel y la tendencia No se les permite variar a tasas independientes. El modelo LES de Holt8217s aborda este problema incluyendo dos constantes de suavizado, una para el nivel y otra para la tendencia. En cualquier momento t, como en el modelo Brown8217s, existe una estimación L t del nivel local y una estimación T t de la tendencia local. Aquí se calculan recursivamente a partir del valor de Y observado en el instante t y de las estimaciones previas del nivel y de la tendencia por dos ecuaciones que les aplican el suavizado exponencial separadamente. Si el nivel estimado y la tendencia en el tiempo t-1 son L t82091 y T t-1. Respectivamente, entonces la previsión de Y tshy que habría sido hecha en el tiempo t-1 es igual a L t-1 T t-1. Cuando se observa el valor real, la estimación actualizada del nivel se calcula recursivamente interpolando entre Y tshy y su pronóstico, L t-1 T t-1, utilizando pesos de 945 y 1-945. El cambio en el nivel estimado, Es decir L t 8209 L t82091. Puede interpretarse como una medida ruidosa de la tendencia en el tiempo t. La estimación actualizada de la tendencia se calcula recursivamente mediante la interpolación entre L t 8209 L t82091 y la estimación anterior de la tendencia, T t-1. Utilizando los pesos de 946 y 1-946: La interpretación de la constante de suavizado de tendencia 946 es análoga a la de la constante de suavizado de nivel 945. Los modelos con valores pequeños de 946 asumen que la tendencia cambia muy lentamente con el tiempo, mientras que los modelos con 946 más grandes suponen que está cambiando más rápidamente. Un modelo con una gran 946 cree que el futuro lejano es muy incierto, porque los errores en la estimación de la tendencia son muy importantes cuando se pronostica más de un período por delante. Las constantes de suavizado 945 y 946 se pueden estimar de la manera habitual minimizando el error cuadrático medio de los pronósticos de 1 paso adelante. Cuando esto se hace en Statgraphics, las estimaciones resultan ser 945 0,3048 y 946 0,008. El valor muy pequeño de 946 significa que el modelo supone muy poco cambio en la tendencia de un período al siguiente, por lo que básicamente este modelo está tratando de estimar una tendencia a largo plazo. Por analogía con la noción de la edad media de los datos que se utilizan para estimar el nivel local de la serie, la edad media de los datos que se utilizan para estimar la tendencia local es proporcional a 1/946, aunque no exactamente igual a eso. En este caso, resulta ser 1 / 0.006 125. Esto no es un número muy preciso en la medida en que la precisión de la estimación de 946 es realmente de 3 decimales, pero es del mismo orden general de magnitud que el tamaño de la muestra de 100 , Por lo que este modelo está promediando bastante historia en la estimación de la tendencia. La gráfica de pronóstico siguiente muestra que el modelo LES calcula una tendencia local ligeramente mayor al final de la serie que la tendencia constante estimada en el modelo SEStrend. Además, el valor estimado de 945 es casi idéntico al obtenido ajustando el modelo SES con o sin tendencia, por lo que este es casi el mismo modelo. Ahora, ¿se ven como pronósticos razonables para un modelo que se supone que está estimando una tendencia local? Si observa esta gráfica, parece que la tendencia local se ha vuelto hacia abajo al final de la serie. Lo que ha ocurrido Los parámetros de este modelo Se han estimado minimizando el error al cuadrado de las previsiones de un paso adelante, y no las previsiones a largo plazo, en cuyo caso la tendencia no hace mucha diferencia. Si todo lo que usted está mirando son errores de un paso adelante, no está viendo la imagen más grande de las tendencias sobre (digamos) 10 o 20 períodos. Con el fin de obtener este modelo más en sintonía con la extrapolación de nuestro ojo de los datos, podemos ajustar manualmente la constante de tendencia de suavizado para que utiliza una base más corta para la estimación de tendencia. Por ejemplo, si elegimos establecer 946 0.1, la edad promedio de los datos utilizados para estimar la tendencia local es de 10 períodos, lo que significa que estamos promediando la tendencia en los últimos 20 períodos aproximadamente. Here8217s lo que el pronóstico gráfico parece si fijamos 946 0.1 mientras que mantener 945 0.3. Esto parece intuitivamente razonable para esta serie, aunque probablemente sea peligroso extrapolar esta tendencia en más de 10 periodos en el futuro. ¿Qué pasa con las estadísticas de errores? Aquí hay una comparación de modelos para los dos modelos mostrados arriba, así como tres modelos SES. El valor óptimo de 945 para el modelo SES es de aproximadamente 0,3, pero se obtienen resultados similares (con un poco más o menos de capacidad de respuesta, respectivamente) con 0,5 y 0,2. (A) Holts lineal exp. Alisamiento con alfa 0.3048 y beta 0.008 (B) Holts linear exp. Alisamiento con alfa 0.3 y beta 0.1 (C) Alisamiento exponencial simple con alfa 0.5 (D) Alisamiento exponencial simple con alfa 0.3 (E) Suavizado exponencial simple con alfa 0.2 Sus estadísticas son casi idénticas, por lo que realmente no podemos hacer la elección sobre la base De errores de pronóstico de un paso adelante en la muestra de datos. Tenemos que recurrir a otras consideraciones. Si creemos firmemente que tiene sentido basar la estimación de tendencia actual en lo que ha ocurrido durante los últimos 20 períodos, podemos hacer un caso para el modelo LES con 945 0.3 y 946 0.1. Si queremos ser agnósticos acerca de si hay una tendencia local, entonces uno de los modelos SES podría ser más fácil de explicar y también daría más pronósticos intermedios para los próximos 5 o 10 períodos. (Volver al principio de la página.) Qué tipo de tendencia-extrapolación es la mejor: horizontal o lineal La evidencia empírica sugiere que, si los datos ya han sido ajustados (si es necesario) para la inflación, puede ser imprudente extrapolar lineal a corto plazo Tendencias en el futuro. Las tendencias evidentes hoy en día pueden desacelerarse en el futuro debido a causas variadas como la obsolescencia del producto, el aumento de la competencia y las caídas o repuntes cíclicos en una industria. Por esta razón, el suavizado exponencial simple a menudo realiza mejor fuera de la muestra de lo que de otra manera podría esperarse, a pesar de su extrapolación horizontal de tendencia horizontal. Las modificaciones de la tendencia amortiguada del modelo de suavizado exponencial lineal también se usan a menudo en la práctica para introducir una nota de conservadurismo en sus proyecciones de tendencia. El modelo LES con tendencia amortiguada se puede implementar como un caso especial de un modelo ARIMA, en particular, un modelo ARIMA (1,1,2). Es posible calcular intervalos de confianza en torno a los pronósticos a largo plazo producidos por modelos de suavizado exponencial, al considerarlos como casos especiales de modelos ARIMA. El ancho de los intervalos de confianza depende de (i) el error RMS del modelo, (ii) el tipo de suavizado (simple o lineal) (iii) el valor (S) de la (s) constante (s) de suavizado y (iv) el número de periodos por delante que está pronosticando. En general, los intervalos se extienden más rápido a medida que el 945 se hace más grande en el modelo SES y se extienden mucho más rápido cuando se usa lineal en lugar de simple suavizado. Este tema se discute más adelante en la sección de modelos de ARIMA de las notas. (Volver al principio de la página.) Promedios móviles ponderados: lo básico Durante años, los técnicos han encontrado dos problemas con la media móvil simple. El primer problema radica en el marco temporal del promedio móvil (MA). La mayoría de los analistas técnicos creen que la acción de los precios. El precio de la acción de apertura o cierre, no es suficiente de lo que depender para predecir adecuadamente las señales de compra o venta de la acción de cruce del MA. Para resolver este problema, los analistas asignan ahora más peso a los datos de precios más recientes utilizando el promedio móvil con suavidad exponencial (EMA). Por ejemplo, usando un MA de 10 días, un analista tomaría el precio de cierre del décimo día y multiplicaría este número por 10, el noveno día por nueve, el octavo Día por ocho y así sucesivamente a la primera de la MA. Una vez que se ha determinado el total, el analista dividirá el número por la adición de los multiplicadores. Si agrega los multiplicadores del ejemplo de MA de 10 días, el número es 55. Este indicador se conoce como el promedio móvil ponderado linealmente. (Para la lectura relacionada, echa un vistazo a los promedios móviles simples hacen que las tendencias se destacan.) Muchos técnicos son creyentes firmes en el promedio móvil exponencialmente suavizado (EMA). Este indicador se ha explicado de muchas maneras diferentes que confunde tanto a los estudiantes como a los inversores. Tal vez la mejor explicación viene de John J. Murphys Análisis Técnico de los Mercados Financieros, (publicado por el Instituto de Nueva York de Finanzas, 1999): El exponencialmente suavizado media móvil se ocupa de los dos problemas asociados con el promedio móvil simple. En primer lugar, el promedio suavizado exponencial asigna un mayor peso a los datos más recientes. Por lo tanto, es una media móvil ponderada. Pero si bien asigna menor importancia a los datos de precios pasados, incluye en su cálculo todos los datos en la vida útil del instrumento. Además, el usuario puede ajustar la ponderación para dar mayor o menor peso al precio de los días más recientes, que se agrega a un porcentaje del valor de días anteriores. La suma de ambos valores porcentuales se suma a 100. Por ejemplo, el precio de los últimos días se podría asignar un peso de 10 (.10), que se agrega a los días anteriores peso de 90 (.90). Esto da el último día 10 de la ponderación total. Esto sería el equivalente a un promedio de 20 días, al dar al precio de los últimos días un valor menor de 5 (0,05). Figura 1: Promedio móvil suavizado exponencial El gráfico anterior muestra el índice Nasdaq Composite desde la primera semana de agosto de 2000 hasta el 1 de junio de 2001. Como puede ver claramente, la EMA, que en este caso está usando los datos de cierre de precios en un De nueve días, tiene señales de venta definitiva el 8 de septiembre (marcado por una flecha negra hacia abajo). Este fue el día en que el índice se rompió por debajo del nivel de los 4.000. La segunda flecha negra muestra otra pierna abajo que los técnicos esperaban. El Nasdaq no pudo generar suficiente volumen e interés de los inversores minoristas para romper la marca de 3.000. Luego se zambulló de nuevo hasta el fondo en 1619.58 el 4 de abril. La tendencia alcista del 12 de abril está marcada por una flecha. Aquí el índice cerró en 1,961.46, y los técnicos comenzaron a ver a los gestores de fondos institucionales comenzando a recoger algunos negocios como Cisco, Microsoft y algunos de los temas relacionados con la energía. (Lea nuestros artículos relacionados: Moving Average Envelopes: Refinación de una herramienta de comercio popular y rebote promedio móvil).
Comments
Post a Comment